Introduction
Otitis media is one of the most commonly encountered pediatric ENT diseases. Antibiotic resistance is increasing partly because of their overuse and largely because of changing microbiological strains leading to the disease. In this study, we aimed to determine the current microbiological pattern of the disease in children.

Participants and methods
Ear discharges of 200 children with acute otitis media between 6 and 14 years of age were microbiologically examined.

Results
Virus-only infection was positive in 13% of patients, 30% were only bacterial (48% of which is Proteus mirabilis), and 57% had combined viral and bacterial infections.

Conclusion
Changing trends in microbiological patterns warrant further researches to achieve better prevention and treatment.

Keywords:
- bacterial
- otitis media
- viral

Monoclonal antibodies for a direct immuno-fluorescence assay of cell smears for RSV provide an efficient, economic, and sensitive means of rapid diagnosis of RSV and can be readily incorporated into a routine clinical laboratory. Samples can be tested singly or in batches as needed. The availability of a rapid direct immunofluorescence assay screening reagent for the detection of multiple common respiratory viruses within 1–2 h of sample collection could be very beneficial in terms of patient management and infection control [4].

A better understanding of the mechanisms of viral and bacterial interaction in AOM will lead to new strategies for more effective treatment and the successful development of respiratory virus vaccines will offer effective prevention for this very common childhood disease [5].

Participants and methods
This study is a cross-sectional observational study; 154 patients with 200 discharging ears presenting to our ENT clinic at Hai Aljameaa Hospital in south Jeddah were enrolled in our study in 2011. They were clinically diagnosed with acute otitis media with discharging ears.

Monoclonal antibodies for a direct immuno-fluorescence assay of cell smears for RSV provide an efficient, economic, and sensitive means of rapid diagnosis of RSV and can be readily incorporated into a routine clinical laboratory. Samples can be tested singly or in batches as needed. The availability of a rapid direct immunofluorescence assay screening reagent for the detection of multiple common respiratory viruses within 1–2 h of sample collection could be very beneficial in terms of patient management and infection control [4].

A better understanding of the mechanisms of viral and bacterial interaction in AOM will lead to new strategies for more effective treatment and the successful development of respiratory virus vaccines will offer effective prevention for this very common childhood disease [5].
ears. Their age ranged between 6 and 14 years. The male to female ratio was 1.3 : 1.

An informed consent was obtained from all patients and IRB approval was obtained.

Specimens were collected throughout the year, but the majority of them were obtained during the Hajj period.

Three sterile swabs were used to obtain aural discharge from each discharging ear. One was used for the detection of RSV by direct immune-fluorescence using the IMAGEN RSV test according to the manufacturer’s procedure, the second was used to prepare a direct film with Gram’s stain, and the last was used for isolation and identification of aerobic bacterial pathogens.

The IMAGEN RSV test includes monoclonal antibodies conjugated to fluorescein isothiocyanate. The conjugated antibodies bind specifically to viral antigens present in all strains of human RSV. The reagent is used in a one-step direct immunofluorescence technique. Fig. 1 shows the immunofluorescence of the virus.

Statistical analysis using IBM SPSS 22 for Mac statistical software was used to analyze the results.

Results

There was no statistically significant difference between males and females or age predilection.

RSV was present in around 70% of specimens examined, of which 57% also had bacterial infection. Fig. 2 shows the prevalence of bacterial and viral infections of the specimens obtained.

Bacteriological examination and culture showed a higher prevalence (48%) of *Proteus mirabilis* among other causative organisms as indicated in (Fig. 3).

Analysis of the incidence of coinfection between RSV and bacteriological strains showed a highly statistically significant correlation between RSV and *P. mirabilis* infection as shown in (Table 1).

Discussion

Increasing resistance to antibiotics together with emerging virulent strains could be partially responsible for the failure or prolonged treatment of otitis media in pediatric age groups.

RSV is the major cause of lower respiratory tract disease in infants and young children, causing seasonal epidemics of respiratory illness each year [6].

Figure 1

Virus immunofluorescence (green fluorescence).

Figure 2

Viral and bacterial prevalence.

Figure 3

Bacteriological prevalence.
RSV, respiratory syncytial virus.

Conclusion

Evolution of new organisms causing acute otitis media, such as *P. mirabilis*, together with a higher incidence of coinfection with RSV that might have a cause–effect relationship, as shown in our study, warrants further multicenter studies to validate these results.

Development of an RSV vaccine might help prevent pediatric acute otitis media especially in low standard or highly infectious communities like what happens during pilgrimage season.

Acknowledgements

Informed consent was obtained from the patients together with IRB approval.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

8. Philip A, Brunell MD. In a series of studies of children with acute otitis media by the Calreston group by testing middle ear fluids and nasal wash specimens evidence for viral involvement was found in 41%. Pediatrics 2002; 109:826.