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Electrically evoked auditory brainstem 
response in cochlear implantation: what you 
need to know (short review)
Nashwa Nada1*  , Enaas Kolkaila1, Philipp Schendzielorz2 and Trandil El Mahallawi1 

Abstract 

Background: Electrically evoked auditory brainstem response (E-ABR) is an evoked potential recorded from the 
auditory nerve in response to electric stimulation. It is considered a short latency evoked potential. It plays a vital role, 
especially after the increased number of cochlear implant receivers.

Body of abstract: E-ABR is characterized by three positive peaks (eII, eIII, and eV) generated from the auditory nerve, 
cochlear nucleus, and perhaps from neurons in the lateral lemniscus or inferior colliculus. The largest is correspond-
ing to wave V of the acoustic one. There are differences between both acoustic auditory brainstem response (A-ABR) 
and E-ABR. E-ABR is characterized by larger amplitudes and shorter latencies than the acoustic, and it has a steeper 
latency-intensity function. There are many variables affecting the E-ABR waveform, including recording-related vari-
ables, stimulus-related variables, and subject-related variables. E-ABR has potential clinical applications in cochlear 
implants (pre, inter, and postoperative).

Conclusion: After the increase in the number of cochlear implant receivers, E-ABR provides a promising new tool 
that can be used to evaluate auditory nerve functions. A lot of factors affect its waveform, including recording-related 
factors and stimulus-related and subject-related variables. E-ABR has many clinical applications, not only in post-
implantation situations but also in preimplantation.

Keywords: Acoustic auditory brainstem response (A-ABR), Electrically evoked auditory brainstem response (E-ABR), 
Cochlear implant (CI)
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Background
Electrically evoked auditory brainstem response 
(E-ABR)—like acoustic evoked auditory brainstem 
response ABR (A-ABR)—is a short latency-evoked 
potential that occurs within 0–10 ms of abrupt stimulus 
onset. E-ABR is characterized by three positive peaks (eII, 
eIII, and eV) generated from the auditory nerve, cochlear 
nucleus, and  perhaps from neurons in the lateral lem-
niscus or inferior colliculus. [1]. The standard response 

waveform of E-ABR consists of two to three waves with 
the largest corresponding to wave V of the (A-ABR) [2]. 
Wave I is usually hidden by stimulus artifacts and pream-
plifier distortion [3].

Electrical ABR versus acoustic ABR
General differences between electrical and acoustic 
stimulations
Electrical stimulation of the auditory nerve by cochlear 
implants induces a pattern of activity that is different 
from acoustic stimulation in the normal ear.

In normal ears, acoustic stimulation generates trave-
ling waves that progress from the base of the cochlea 
toward the apex. That in turn will generate receptor 
potential which leads to the activation of the primary 
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fibers through synapses. All these processes are bypassed 
in electrical stimulation of the cochlea in implanted deaf 
individuals [4].

The auditory nerve fibers are sharply tuned to the 
acoustic stimuli than to the electric stimulation. Moreo-
ver, the phase-locking occurs to the acoustic sine wave 
to the positive phase of the acoustic stimulation, while it 
occurs at the peak of the negative phase with the electric 
stimulation but is more precise to the latter one [5, 6].

The dynamic range with electrical stimulation is much 
less than that induced by acoustic stimulation. The nor-
mal activation of auditory nerve fibres involves the 
excitation of inner hair cells; that is why it has a large 
dynamic range. On the other hand, with electrical stimu-
lation, the operation is mediated through bypassing the 
IHC activation. Accordingly, it has a narrow dynamic 
range [4]. Furthermore, the maximum firing rate and the 
spread of excitation within the auditory nerve are much 
larger for electrical stimulation than for normal acoustic 
stimulation [4].

Latency
It was suggested that neural synchrony for electric-
evoked potential recordings in CI patients is greater than 
that for acoustic stimulation in normal-hearing individu-
als because the auditory nerve is directly stimulated with 
a rapid-onset electrical pulse [7]. With the absence of 
delays mediated by mechanical wave propagation, sen-
sory cell transduction, and synaptic excitation of the pri-
mary afferent neurons, E-ABR absolute wave latencies 
are shorter than those of A-ABR. Wang et  al. reported 
that the absolute latencies of E-ABR were 1–2 ms shorter 
than the acoustic ABR latencies, while III–V intervals 
remained the same as that of acoustic ABR [8].

Latency/intensity function
The E-ABR waveform pattern is like that of A-ABRs 
but with a steeper latency-intensity function [8]. With 
A-ABR, wave latencies decrease with increasing stimulus 
intensity as much as 2 ms between threshold and satura-
tion [9], while with E-ABR, latencies change slightly [10, 
11] (Fig. 1).

Amplitude
E-ABR yields larger responses than those of A-ABR. The 
fibers that respond synchronously to the click stimula-
tion are mostly from the base of the cochlea [12], whereas 
with electric stimulation, all excited fibers respond syn-
chronously [10] (Fig. 1).

Variables affecting E‑ABR
Recording factors
Ipsilateral versus contralateral mastoid
E-ABR waves recorded on the same side had shifted 
baseline, and the artifacts were much larger than those 
obtained on the contralateral side [8]. So, it should be 
recorded from the contralateral side.

Stimulus artifact
Stimulus artifact usually affects the E-ABR recordings. 
This artifact is due to preamplifier distortion [2, 3]. A lot 
of trials were developed to overcome such complications, 
such as recording from the contralateral mastoid and 
using short biphasic pulses [13, 14]. Another possibility 
for this artifact is the presence of radiofrequency signals 
used to send information to the internal device of CI [15]. 
A filter for radiofrequency is often needed to successfully 
record target responses [2, 16, 17].

Fig. 1 The E-ABR response was obtained from an apical electrode 
in one animal (a guinea pig) in response to a biphasic pulse. The 
stimulation level was lowered until the last repeatable and detectable 
wave (threshold) was obtained. The latency shift with the decrease in 
stimulation level (SL) was minimal, while the amplitude change was 
remarkable. Permission was taken from Nada et al. [11]



Page 3 of 8Nada et al. The Egyptian Journal of Otolaryngology           (2022) 38:67  

Other artifacts that can interfere with E-ABR record-
ing involve non-auditory sensations, facial nerve stimu-
lation, muscle artifact, and vestibular artifacts [14, 18]. 
In humans, facial muscle artifact has a large amplitude, 
grows rapidly with increased stimulus intensity, and has 
latency between 5 and 10 ms [14].

Band‑pass filter
Initially, van den Honert et al. reported that the outcome 
of E-ABR morphology was distorted, and there was a 
shift in the baseline when using a bandwidth between 
100 and 3 kHz. This E-ABR morphology was enhanced 
after setting the band-pass filter between 300 Hz and 10 
kHz [14].

Later, Wang et  al. [8] studied the effect of different 
manipulations of band-pass filter on the E-ABR. They 
found that the manipulation of the low cutoff frequency 
(100 down to 0.002 Hz) while keeping the high cutoff 
frequency at 3 kHz did not affect the E-ABR wave V. On 
the contrary, while keeping the low-frequency cutoff fre-
quency at 100 Hz with setting the high cutoff frequency 
below 3 kHz, prolongation of wave V took place. While 
with setting the high cutoff frequency higher than 3 kHz, 
the wave V latency was stable. Moreover, there were 
more obvious noises affecting the waveform when the 
high cutoff frequency changed from 10 to 25 kHz [8].

Monopolar versus bipolar
In the monopolar (MP) mode, the active electrode is an 
electrode on the electrode array, while the reference elec-
trode is located on an electrode lead separated from the 
active electrodes and/or within the implant housing [19].

In the bipolar (BP) mode, an electrode next to the 
active electrode serves as the reference electrode. While 
the BP mode provides more focused stimulation than the 
MP mode, the MP mode has proven superiority mainly 
because the BP mode requires higher stimulation lev-
els that slow down the stimulation rate. As the BP con-
figuration widens, the number of stimulated channels 
decreases [20].

The effect of stimulation mode on the E-ABR was stud-
ied, and the results showed that thresholds tended to be 
lower with steeper amplitude growth function (AGF) in 
the case of monopolar stimulation [21, 22]. This was also 
proven in single nerve studies [10]. It was assumed that 
the steeper slope of the E-ABR growth curve in MP ver-
sus bipolar is due to encroachment of the central densely 
packed spiral ganglion cells (SGCs) in response to the 
first one [23].

Stimulus‑related factors
Biphasic pulses are defined by the following parameters: 
current amplitude, phase duration (PD) for each phase of 

the pulse, and interphase gap (IPG) as illustrated in Fig. 2 
[24].

Intensity
E-ABR is affected by the changes in stimulus intensity. An 
increase in the stimulation level (SL) enhances the ampli-
tudes of the waves. Wave V is the last to disappear with 
decreased SL, although its latency does not change signif-
icantly [11]. The latency decreases slightly with increas-
ing SL (Fig.  1). However, the extent of latency changes 
determined in E-ABR is less than in acoustic stimulation 
[21]. A lot of studies in the E-ABR field reported the same 
results [25–27].

Phase duration (PD)
Magnifying PD leads to augmented excitability. The 
amount of applied charges toward the electrode increases 
proportionally with the total phase area (PD × current 
level) [28]. Biphasic pulses with longer duration require 
smaller currents than shorter pulses to evoke an E-ABR 
of a given intensity [29]. Studies on humans revealed that 
increasing the PD resulted in shortening in the III–V 
latencies [30–32]. The increase in PD yields an increase 
in wave V amplitudes [33] and lower thresholds [22]. 
Also, in an animal study, it was noticed that the slope of 
the AGF became steeper with increasing the PD [23].

Inter‑phase gap duration (IPG)
IPG represents the zero-current interval between the two 
phases of a biphasic stimulus [29] (Fig. 2). Animal studies 
revealed that the increase in the IPG duration would lead 
to large E-ABR amplitudes and lower thresholds [28, 29]. 

Fig. 2 Schematic drawing for the biphasic pulse parameters. Current 
amplitude (intensity) measured by (μA or CLs) phase duration (PD) 
“time of one phase of the biphasic pulse” (μs) and interphase gap 
(IPG) “gap between two phases of the biphasic pulse” (μs). Permission 
was taken from Med-El [24]
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Also, the increase in IPG duration would result in lower 
psychophysical detection thresholds and improved loud-
ness perception in CI recipients [34]. One explanation 
for this effect is increased IPG that delays the beginning 
of the second phase (hyperpolarization) of the current 
stimulus away from the first phase. In this way, spike 
probability is raised [35–37]. Recently, it is reported that 
while elevating IPGs from 10 to 30 μs, the E-ABR waves 
showed an increase in amplitude and decrease in the 
threshold with a steeper slope of AGT (Fig.  3) [11, 25]. 
A similar effect of increasing IPGs and PDs on E-ABR 
slopes was observed by Prado-Guitierrez et al. [29].

Polarity sensitivity and type of pulse waves
Polarity sensitivity means the difference in responses to 
positive (anodic) and negative (cathodic) electrical cur-
rents (Fig.  2) [38]. Better sensitivity to anodic polarity 
than to cathodic polarity may denote peripheral process 
degeneration or demyelination [39–41]. Preference to 
one polarity is thought to reflect differences in the site of 
spike initiation in response to anodic and cathodic pulse 
shapes [38]. Undurraga et al. compared different pulses of 
E-ABR. They found that anodic stimulations for all pulses 
caused lower threshold and higher amplitudes than 
cathodic stimulation [42].

Several physiological and modeling studies have shown 
that monophasic stimuli yield a lower threshold than 
biphasic pulse [28, 43, 44]. Monophasic pulses could not 
be used in humans due to safety issues. So, it was nec-
essary to develop a balanced pulse (biphasic, triphasic, 
and pseudomonophasic) [43]. Pseudomonophasic pulses 
are biphasic pulses whose 2nd pulse has different dura-
tion and amplitude [44]. Triphasic pulses provide a ben-
efit over the biphasic pulse. Artifacts are more minimized 

by restoring the neural membrane to its resting poten-
tial faster than in biphasic pulses [45]. However, another 
research group compared triphasic and biphasic pulses in 
evoking E-ABR. On the contrary, they found that bipha-
sic pulses had better detectability [46]. More studies are 
required to compare the effect of different pulse shapes 
on E-ABR detectability.

Variables related to the CI electrodes
Electrode style or configuration
The response amplitude profile reflects both the spread 
of excitation across fibers and the spread of the response 
fields from each active neuron to the recording elec-
trode [47]. The design of the electrode (being straight or 
curved) largely affects E-ABR. E-ABR thresholds were 
much lower in the animals implanted with the curved 
electrode [48]. This is so far accepted due to the proxim-
ity of the electrode arrays to the stimulated SGCs. Most 
of the current literature evaluating the effects of charge 
on array type reported that peri-modiolar placements 
resulted in lower E-ABR thresholds and larger supra-
threshold wave V amplitude [49, 50]. The latter study 
reported that removal of the stylet with the Nucleus 
24 Contour array results in decreased threshold and 
increased suprathreshold amplitude, consistent with 
more medial electrode placement.

A most recent study has compared the effect of the 
slim modular electrode with pull-back maneuver and the 
conventional perimodiolar electrode on the  electrically 
evoked compound action potential (ECAP). The authors 
reported significantly lower thresholds for the 1st. The 
pull-back maneuver led to better modiolar proximity. 
However, more research should be done to study the 
effect on the E-ABR recordings also [51].

Fig. 3 The E-ABR response obtained from an apical electrode of CI in one animal to biphasic pulse. E-ABR input/output curves represent responses 
to the three different stimuli with different IPGs (10, 20, 30 μs). Notice that the larger the IPG, the greater the suprathreshold amplitude of the 
amplitude growth curve (AGC), the steeper the slope of the (AGC), and the further the shift of the amplitude growth curve (AGC) to the left. 
Permission was taken from Nada et al. [11]



Page 5 of 8Nada et al. The Egyptian Journal of Otolaryngology           (2022) 38:67  

Electrode (full band versus half band)
The full band electrode is believed to deliver more cur-
rent to the stimulated SGCs than the half band electrode. 
One study investigated the differences between the full 
band and the half bands on E-ABR recordings. Further-
more, they compared E-ABR when stimulating the inner 
half of the half band versus the outer half. The E-ABR had 
significantly lower amplitudes, and significantly higher 
CLs were required to elicit threshold responses when 
stimulation was delivered through outer half band elec-
trodes than when delivered through either the inner half 
band or full band electrode. However, the stimulation 
level delivered through both full band electrodes and half 
band inner side necessary to evoke E-ABR threshold did 
not significantly differ [52].

The electrode position
Thresholds, amplitudes, and waveform morphologies 
have been observed to differ across subjects and within 
individual subjects for different electrodes [2, 53]. Wave 
V latencies were longer for more basal electrodes (e.g., 
4.20 ms) and shortest for electrodes in an apical position 
(e.g., 3.82 ms) [53, 54].

The effect of stimulus current level and the electrode site 
on E-ABR was studied in patients using CI, and the authors 
concluded that the apical electrode had better responses 
with respect to latency, amplitude, and morphology com-
pared with the basal one [2]. This was also mentioned in 
other study [3]. It has been suggested that this difference 
in latency, amplitude, and morphology might occur due to 
the differences in the population and pattern of surviving 
(SGCs) within the apical region and the better neurophysi-
ology “phase locking” of these apical fibers [3].

The closer the electrode array is to the stimulated SGCs 
(as it is at the apical region), the more influence on the 
threshold there is, i.e., lower threshold compared to the 
basal region [49].

Variables related to subjects
Surviving spiral ganglia cells
E-ABR responses (thresholds, AGF, and slope) are 
affected by the underlying SGCs. Some studies have 
reported poor predictive relationships between response 
measures and SGC survival [55, 56], while others 
reported the contrary [29, 57–60].

Miller et al. observed a significant correlation between 
spiral ganglion neuron counts and E-ABR threshold [58]. 
Other studies reported a “strikingly good correlation” 
between both input/output function slope and maxi-
mum peak-to-peak amplitude with neural survival [59–
61]. In another study done on guinea pigs injected with 
stem cells, the authors reported that E-ABR recorded 
from animals (with stem cells)—which expressed a larger 

amount of surviving SGCs—had larger amplitudes and 
lower thresholds with steeper AGF [25].

Moreover, intra-subject variability in the E-ABR wave-
form can be correlated with the surviving SGCs within 
the same cochlea. Several studies reported that E-ABR 
latencies follow a decreasing gradient from the base to 
the apex of the array, associated with increasing ampli-
tudes of E-ABR waveforms [2, 53].

Auditory plasticity and E‑ABR
Gordon et al. evaluated the effect of auditory plasticity on 
E-ABR recorded from 50 children with CI over a period 
of 1 year [62]. All the children were pre-lingual and had 
severe to profound hearing loss. The age of implanta-
tion ranged from 1 to 17 years. E-ABR was assessed 
immediately after activation of their CIs. Over the year, 
it was noticed that latencies of the peaks significantly 
decreased, and amplitudes significantly increased. The 
authors proposed that improvements in synaptic effi-
cacy or even increased myelination happened due to the 
repeated stimulation of the neural pathways [63].

Furthermore, Gordon et al. evaluated E-ABRs in three 
groups of children. All were implanted at younger than 
3 years old. The first group was with bilateral simulta-
neous implants, the second and third groups received 
their second ear implant after a short interval (< 1 year) 
and a long interval (> 2 years), respectively [64]. The 
E-ABRs were recorded immediately after CI activation, 
then 3 and 9 months later. The results revealed no dif-
ferences in E-ABRs between the ears in the children in 
the first group with simultaneous CI implants. However, 
for sequentially implanted children, the ears with later 
implantation showed prolonged latencies compared to 
the 1st implanted ears [64]. In a recent work performed 
on an animal model of guinea pigs [25], E-ABR was 
recorded over a period of 2 months post-implantation. 
Thresholds shifted to lower values and amplitude to 
higher values over this period in both study and control 
groups. Changes in the excitable elements or the current 
path to the excitable tissue were proposed as potential 
mechanisms [65]. Another study also reported a highly 
significant negative correlation between wave III latency 
and threshold and duration of implant use [3].

The age factor
The age of the CI candidate does not affect the E-ABR 
recording. In one study done on children with CIs with 
an age range of 10 months to 5 years, no correlation was 
found between E-ABR wave latencies and the age of the 
candidates [66]. In another study aimed to compare chil-
dren’s E-ABR responses with adult E-ABR responses, there 
was not any statistically significant difference between 
both groups as regards E-ABR threshold or latency [3].
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Effect of anesthesia
Only one study was found to record the effect of anes-
thesia. It was found that there was not much change in 
E-ABR morphology recorded under general anesthesia 
“intraoperative” and under sedation  “post-operative” 
for the same pediatric patients. Authors concluded 
that  anesthesia did not have a large effect on E-ABR 
recording [67].

Clinical applications of E‑ABR
Preoperative
Electric excitability is established by the minimally inva-
sive transtympanic (E-ABR) test. E-ABR will be accom-
plished either by direct round window stimulation or 
transtympanic promontory stimulation without signifi-
cant differences in signal delivery [68, 69].

As stated in a previous section, a lot of studies have 
reported that E-ABR measurements correlated with 
SGCs [29, 44, 57, 59, 60] and may serve as an objective 
indicator of the ability of the auditory pathway to respond 
to electric stimulation. Lower promontory E-ABR thresh-
olds were found in patients with normal cochlear anat-
omy compared with those with cochlear ossification. This 
was possibly due to reduced SGCs together with the inef-
ficient electric stimulus delivery to the cochlear nerve 
because of the ossification [68].

More recently, one study conducted on children with 
different inner ear malformations, it was reported that 
those children had elevated threshold E-ABR compared 
to the control group. SL had to be increased in order to 
provoke a good E-ABR waveform [70]. So, E-ABR moni-
toring seems to be a useful tool to further predict the 
outcome of CI surgery cases with inner ear malforma-
tions [69, 71].

Intraoperative
The E-ABR recordings can be obtained at the end of the 
surgery after the surgical insertion of all the active elec-
trodes into the cochlea. Testing can be done while the 
surgeon is suturing the skin flap, thus minimizing the 
need to extend the time the patient is with general anes-
thesia. The surgeon can use a gas-sterilized transmitting 
coil, including a magnet, over the internal device to start 
averaging [53]. In this way, the electrode placement and 
functionality of CI can be checked [15, 69].

Postoperative
Confirming auditory function in special populations 
of children
Auditory brainstem responses can be variable in children 
with hypoplastic auditory nerves [72]. While responses 
provide evidence of the auditory nerve response to the 
CI, these responses are different according to the severity 

of the underlying malformation [72]. Also, in children 
with ANSD, it can be argued that the presence of E-ABR 
or other electrically evoked responses is the most impor-
tant initial measure to confirm CI’s usefulness in such 
patients. The presence of E-ABR proved that synchro-
nous brainstem function has been restored. Indeed, those 
children with ANSD exhibiting normal E-ABR showed 
better speech perception outcomes than their peers with 
absent/abnormal E-ABR [73, 74]. Moreover, it was found 
that children with ANSD that is associated with cochlear 
nerve deficiency had higher rates of abnormal E-ABR 
than those with ANSD but with normal cochlear nerves 
[73].

Evaluation of auditory brainstem development and plasticity
For most implant recipients, with 1st introduction of 
electrical stimulation to a cochlear implant, we can get a 
clear E-ABR response. Therefore, the E-ABR test can be 
used in the functional evaluation of the auditory system 
between the time of initial implant activation and after 
chronic cochlear implant use [8].

The quality of the E-ABR waveform appears to cor-
relate well with postoperative speech perception [75, 
76]. Hence, the E-ABR can be used as a successful tool 
to measure the developed and enhanced central audi-
tory plasticity which occurs because of delivering chronic 
electric stimulation [77].

Programming or mapping of the implanted device
E-ABR can be used as an objective measure for CI pro-
gramming, especially in children. The E-ABR detection 
threshold can be used to estimate a patient’s T levels [78–
80]. Also, Mittal et  al. (2015) conducted a study on 75 
children and found that eABR thresholds were correlated 
with T levels than with C [79]. Electric ABR threshold 
was always between T and C levels. Furthermore, earlier 
studies found the same results regarding eABR detection 
threshold being more correlated, however, not so strong, 
with T level [21, 80]. However, future studies need to 
be done on a large sample size to confirm whether the 
E-ABR threshold is more correlated with the C or T level.

Conclusion
Electric ABR measurement provides a valuable tool 
to assess auditory nerve functions. Getting E-ABRs 
with good morphology is a challenge. Multiple fac-
tors affect the quality of the E-ABR, including stimu-
lus-related parameters, recordings parameters, and 
subject-related variables. E-ABR has potential clinical 
uses in the preoperative, intraoperative, or postopera-
tive setting for patients who are candidates for coch-
lear implantation.
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