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Abstract

Background: The physiological functions of the paranasal sinuses are as yet unclear, and it is often assumed that
these empty air-filled spaces have no vital function in our body. Recently, nitric oxide has been reported to be
synthetized in high concentration by the paranasal sinuses which seems to be the main function of these air-filled
empty spaces.

Body of abstract: The functional role of the paranasal sinuses is still ambiguous despite the several hypotheses
that have been put forward to justify their existence. Although it has been recently demonstrated that the
paranasal sinuses produce large amounts of nitric oxide (NO), otolaryngologists overwhelmed by attempting to
unravel the enigmatic etiology underlying chronic rhinosinusitis have interpreted the high NO output in this
context. Nevertheless, NO prime function is vasodilation and has long been recognized to be produced by the
endothelial cells. In this review, evidence in the literature is piled and pieces of the puzzle are put together to show
that NO synthesized in the paranasal sinuses functions as an airborne messenger that induces pulmonary
vasodilation and thereby decreases the workload on the heart. Recognition that the paranasal sinuses are in fact an
organ with known function is likely to foster further research and has an impact on our current surgical philosophy.

Conclusion: The paranasal sinuses seem to play a vital physiological role in our body rather than being
evolutionary remnants as initially thought. They are likely responsible for regulating the pulmonary blood pressure
thereby preventing pulmonary hypertension.

Keywords: Nitric oxide, Pulmonary hypertension, Paranasal sinuses, Function, Heart

Background
Detailed knowledge of the physiological functions of
each organ in our body is well known to physicians
treating that organ under their domain. Otolaryngolo-
gists have been increasingly overwhelmed with manage-
ment diseases afflicting the paranasal sinuses, and
exploration of novel endoscopic approaches to target
pathologies within and beyond the confines of these si-
nuses. Nevertheless, the physiological function of these
sinuses is as yet unclear.

Several hypotheses have been put forward to explain
the existence of the paranasal sinuses; however, none
has gained widespread acceptance, and it has been as-
sumed that these empty air-filled spaces do not serve a
vital function. The recent discovery of production of ni-
tric oxide (NO) by the mucosal lining of the paranasal
sinuses is likely to unravel the obscure function of these
empty air-filled spaces.

Main text
It has been hypothesized that the main purpose of the
paranasal sinuses is to lighten the weight of the skull to
maintain the equipoise posture of the head on the spine,
thereby preventing fatigue of the posterior cervical
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musculature [1–3]. However, it has been calculated that
if these spaces are filled with bone, this would increase
the weight of the head by only 1–2% [1, 4, 5]. Biggs and
Blanton [4] have demonstrated that at least 6 ounces of
weight have to be added to the anterior head in order to
elicit electromyographic changes in the posterior cervical
musculature. Six ounces of weight is 2–3 times greater
than the weight of bone required to fill the paranasal si-
nuses which makes this hypothesis unlikely.
It has also been hypothesized that the paranasal si-

nuses’ main function is to impart resonance to our
voices [1, 6]. However, it is interesting to know that the
lion with its strong resonant roar that can be heard over
5 miles has small paranasal sinuses while the giraffe with
its feeble voice has large paranasal sinuses [1]. In fact,
the small ostial size of the paranasal sinuses renders
them poor resonators of voice and stands against this
function.
The sinuses have been perceived as thermal insulators

that function to insulate the central nervous system from
the cold air currents passing through the nasal cavity [7].
Nevertheless, the skulls of Japanese macaques living in
cold areas at high altitudes have paranasal sinuses which
are smaller than those of the same species but living in
warmer areas [8]. Again, in humans, the frontal sinuses
of Eskimos have been reported to be hypoplastic com-
pared to the hyperpneumatized frontal sinuses in Negros
[9, 10]. Therefore, thermal insulation of the brain does
not seem to be the main function of the paranasal
sinuses.
The paranasal sinuses are often assumed to be the

major source of mucous in our nasal cavities. However,
it has been estimated that there are around 50–100 sub-
mucous glands in our paranasal sinuses which is a small
number compared to 100,000 submucous glands in our
nasal cavities [1]. So, under physiological conditions, the
paranasal sinuses are not the major source of mucous.
In chronic pathological conditions, hyperplasia and
hyperactivity of the submucous gland take place in the
paranasal sinuses and might result in excessive mucous
production and post-nasal discharge [11, 12]. Nonethe-
less, it is implausible that the main function of these air-
filled spaces is to produce mucous when infected.
Air exchange through the paranasal sinuses takes place

during respiration, and therefore, it is logical to assume
that these large air-filled spaces act as thermoregulators
and air humidifiers. However, it has been estimated that
only 1/1000 of the air in the sinuses is exchanged during
one respiratory cycle [13] which questions their thermo-
regulatory function.
More interestingly, the sinuses have been perceived as

a floatation device that aids to keep the head floating
while swimming and keep the nostrils out of the water
[14]. This is well demonstrated in crocodile’s gesture,

where the entire body except the head is submerged
under water. This hypothesis is based on the aquatic ape
theory, which assumes that man has once moved from
water to land and these sinuses are remnants of his earl-
ier aquatic life [15]. Nevertheless, the skull of dolphins
and whales which still need to surface and breathe air
does not have air-filled bony spaces [16, 17].
Therefore, it is not surprising that Negus [18] has once

considered the paranasal sinuses evolutionary remnants
of useless air spaces. He has stated “There does not ap-
pear to be any functional reason for the appearances of
the paranasal sinuses, and the irregularity of their distri-
bution, often with complete absence, suggests that they
are only unwanted residual spaces.”
Despite this ambiguity, we cannot deny the fact that

almost all living creatures possessing a lung do have
paranasal sinuses, all the way from dinosaurs, crocodiles,
mammals, and birds. Even dolphins and whales which
have lost their limbs as an adaptation to aquatic life did
not lose their paranasal sinuses in their entirety. Instead,
the paranasal sinuses came out of the confines of the
skull and became paranasal air sacs [16]. Indeed, having
a non-porous skull is an adaption to maintain the integ-
rity of their skulls during deep sea diving thereby avoid-
ing barotrauma. Therefore, it seems that the mucous
membrane lining of the paranasal sinuses is the func-
tional element rather than the bony cavity of the parana-
sal sinuses.
Until recently, NO has been considered just an air pollu-

tant as a byproduct of fuel combustion. In 1987, Ignarro
et al. [19] and Palmer et al. [20] independently demon-
strated that the previously recognized endothelial derived
relaxing factor (EDRF) which is released from the vascular
walls is essentially NO. This has shed light that NO might
have a role in our biological systems and enthused further
research that have led to a plethora of discoveries includ-
ing the development of phosphodiesterase-5 inhibitors
used in management of erectile dysfunction. In fact, Ignar-
ro’s work was later acknowledged and earned him the No-
bel Prize in 1998 [21].
In 1991, Gustafsson et al. [22] demonstrated that NO

is present in the exhaled air of rabbits, guinea pigs, and
humans which has inspired further research exploring
the presence NO in the respiratory tract. Three years
later, Lundberg et al. [23] demonstrated that the concen-
tration of NO in exhaled air from the nose in normal
subjects is nearly 10-fold compared to that from patients
with permanent tracheostomies. This finding pointed
out that the primary site of NO production is some-
where in the sinonasal tract.
In 2003, Maniscalco et al. [24] reported that in healthy

subjects, nasal NO levels increase greatly during hum-
ming compared to silent exhalation. This humming-
induced NO peak has been found to decline with
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consecutive repeated humming maneuvers but recovers
completely after a silent period of 3 min. Topical appli-
cation of NO synthase inhibitor reduced nasal NO by >
50% but had no effect on humming-induced NO peak. It
has been proposed that humming-induced vibrations in
the sinus wall facilitate air exchange across the sinus
ostia which expels the retained NO. This was later con-
firmed by demonstrating that humming-induced NO
peak is abolished in patients with endoscopic evidence
of ostial obstruction [25].
Vaidyanathan et al. [26] in 2010 have demonstrated

that patients with chronic rhinosinusitis with nasal
polyps lack the humming-induced NO and that a course
of systemic steroids for 2 weeks resulted in increase in
humming-induced NO presumably due to reaeration of
sinus ostia. In line with the above, several studies have
suggested the role of NO as a non-invasive marker of
sinus ostial patency [26–28].
NO is synthesized from L-arginine by nitric oxide syn-

thase (NOS) which has two isoforms: a constitutive form
and an inducible form [29, 30]. The constitutive form
produces small amounts of NO at a basal level and is
expressed by the epithelial cells of the entire respiratory
tract [31–33]. On the other hand, the inducible form is
present in inflammatory cells and produces high levels
of NO up to 1000-fold that is produced by the constitu-
tive form [34]. It has been recently demonstrated that an
isoform of inducible NOS is constitutively expressed by
the epithelial cells lining the paranasal sinuses [35]. In
contrast, only weak NO synthase activity was found in
the epithelium of the nasal cavity. Therefore, despite the
morphologic similarity of the nasal and paranasal sinus
mucosa, functionally, they seem to be different.
Nitric oxide concentrations in the lower airways of tra-

cheostomized and intubated patients are as low as 2–4
ppb [22], while a concentration in the range of 22,300–
29,000 ppb has been detected in the paranasal sinuses
[33, 35]. This clearly indicates that the primary source of
respiratory NO is the paranasal sinuses. Upon recogni-
tion of NO production by the paranasal sinuses, the sci-
entific community engrossed in unraveling the etiology
of chronic rhinosinusitis has erroneously interpreted this
finding in the context of etiopathogenesis of chronic
sinonasal disorders [27, 36–39]. Interestingly, NO levels
in the maxillary sinus has been shown to undergo fluctu-
ations during respiration [40] which suggests that NO is
released during respiration. Holden et al. [41] found that
NO concentration within the nasal cavity is approxi-
mately 3-fold greater during inhalation compared with
exhalation, and NO concentration increases nearly 6-
fold as air moves from the nasal sill to the posterior oro-
pharynx. Collectively, these findings suggest that high
output of NO produced by the paranasal sinuses travels
during inspiration to the lower respiratory tract.

In 1991, Frostel et al. [42] demonstrated in an animal
model of pulmonary hypertension that inhaled NO acts
as a vasodilator which decreases pulmonary vascular
pressure. Subsequent research consolidated this finding
[43–47] and has led to FDA approval of inhaled NO as a
treatment modality for neonatal pulmonary hypertension
in 1999 [48, 49]. It is well documented in the literature
that chronic oral breathing secondary to adeno-tonsillar
hypertrophy induces pulmonary hypertension, right ven-
tricular strain, and eventually right heart failure [50–55].
This entity has been termed “hypoxic corpulmonale”
and has been erroneously attributed to alveolar
hypoventilation [56]. Neither the amount of inhaled oxy-
gen nor the alveolar ventilation should vary if air is in-
haled from the mouth instead of the nose. However,
breathing through the mouth deprives the lungs from
the endogenously produced NO and is likely to result in
the observed increase in the pulmonary vascular pres-
sure and right ventricular strain.

Conclusion
Based on the above, it seems that the paranasal sinuses
are in fact an organ rather than evolutionary remnants.
The prime function of this organ is to produce NO
which travels downstream with the inspired air to de-
crease pulmonary vascular resistance and thereby de-
crease the workload on the heart. Further research work
on nitric oxide in this context is likely to reveal interest-
ing data and influence our current surgical philosophy
of enlarging the ostia of the paranasal sinuses to improve
their drainage.
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