Skip to main content

Clinical balance tests for evaluation of balance dysfunction in children with sensorineural hearing loss

En

Abstract

Aim

Children with hearing impairment may have a potential risk for vestibular dysfunctions. They may undergo a sensory redistribution process whereby visual and somatosensory information becomes more essential for postural control. The aim of the study was to assess the balance ability in children with sensorineural hearing loss (SNHL) compared with normal-hearing controls using clinical balance subset tests. A second aim was to determine the prognostic value of some etiological, audiological, and demographic (age and sex) factors in predicting a possibility for vestibular impairment for the early identification of children with vestibular deficits.

Participants and methods

Thirty children with normal hearing (17 girls and 13 boys) and 50 children with bilateral SNHL of varying degree, aged between 5 and 15 years, were recruited from the Audiology Unit of Assiut University Hospital. All of them were subjected to the following: basic audiological evaluation (pure tone, speech audiometry), immittancemetry and auditory brainstem responses, clinical balance subset tests of the standardized Bruininks-Oseretsky Test of motor proficiency (BOT-2), modified Clinical Test of Sensory Interaction for Balance (mCTSIB), one-leg stand (OLS), and tandem stand.

Results

Hearing-impaired (HI) children showed bilateral SNHL of varying degree, ranging from moderate to profound hearing loss (moderately–severe 32%, severe 18%, and profound 50%) and of different etiologies (heredofamilial 46%, acquired 38%, not known 16%).

Balance abilities as measured in this study were significantly poorer in HI children compared with normal-hearing children. HI children with acquired cause and profound degree of SNHL had the highest abnormal score in these clinical tests compared children with other etiologies and degrees of SNHL (although this difference did not reach statistical significance).

In most clinical balance tests that were done in this study, the youngest children in the HI group achieved scores that were almost lower than the scores obtained by the older age groups; the most significant difference was observed for tests performed with eyes closed.

Conclusion

Balance dysfunction occurs in a significant percentage of HI children and may have significant detrimental effects on motor development mainly in very young children. Therefore, information on the identification and treatment of these balance dysfunctions is crucial.

References

  1. Pajor A, Jozefowicz-korczynsks M. Prognostic factors for vestibular impairment in sensorineural hearing loss. Ear Arch Otorhinolaryngol. 2008;265:403–407.

    Article  Google Scholar 

  2. Wilson VJ, Peterson BW. The role of the vestibular system in posture and movement. In: Mountcastle VB, editor. Medical physiology. Vol. 1. 14th ed. St Louis, MO:CV Mosby Co.;1980. pp. 813–836.

    Google Scholar 

  3. Kaga K. Vestibular compensation in infants and children with congenital and acquired vestibular loss in both ears. Int J Pediatr Otorhinolaryngol. 1999;49:215–224.

    Article  CAS  PubMed  Google Scholar 

  4. Jongkees LB, Maas JP, Philipszoon AJ. Clinical nystagmography: a detailed study of electro-nystagmography in 341 patients with vertigo. Pract Otorhinolaryngol. 1962;24:65–93.

    CAS  Google Scholar 

  5. Jongkees LB. Vestibular tests for the clinician. Arch Otolaryngol. 1973;97:77–80 1973.

    Article  CAS  PubMed  Google Scholar 

  6. De Kegel A, Dhooge I, Cambier D, Baetens T, Palmans T, Van Waelvelde H. Test–retest reliability of the assessment of postural stability in typically developing children and in hearing impaired children gait & posture. J Gait Posture. 2011;33:679–685.

    Article  Google Scholar 

  7. Windmill IM. Universal screening of infants for hearing loss: further justification. J Pediatr. 1998;133:318–319.

    Article  CAS  PubMed  Google Scholar 

  8. Woollacott MH, Debu B, Mowatt M. Neuromuscular control of posture in the infant and child: is vision dominant? J Mot Behav. 1987;19:167–168.

    Article  CAS  PubMed  Google Scholar 

  9. Woollacott MH, Shumway-Cook A. Changes in postural control across the life span–a systems approach. Phys Ther. 1990;70:799–807.

    Article  CAS  PubMed  Google Scholar 

  10. Butterfield SA. Gross motor profiles of deaf children. Percept Mot Skills. 1986;62:68–70.

    Article  CAS  PubMed  Google Scholar 

  11. Angeli S. Value of vestibular testing in young children with sensorineural hearing loss. Arch Otolaryngol Head Neck Surg. 2003;129:479–482.

    Article  Google Scholar 

  12. Goebel JA. Should we screen hearing-impaired children for vestibular dysfunction? Arch Otolaryngol Head Neck Surg. 2003;129:482–483.

    Article  PubMed  Google Scholar 

  13. Snashall SE. Vestibular function tests in children. J R Soc Med. 1983;76:555–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Valente LM. Adaptation of adult techniques for evaluating vestibular function in children. Hear J. 2007;60:34–44.

    Article  Google Scholar 

  15. Mergner T, Rosemeier T. Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions–a conceptual model. Brain Res Brain Res Rev. 1998;28:118–135.

    Article  CAS  PubMed  Google Scholar 

  16. Arnvig J. Vestibular function in deafness and severe hardness of hearing. Acta Otolaryngol. 1955;45:283–288.

    Article  CAS  PubMed  Google Scholar 

  17. Goldstein R, Landau E, Kleffner F. Neurological assessment of some deaf and aphasic children. Ann Otol Rhinol Laryngol. 1958;67:468–479.

    Article  CAS  PubMed  Google Scholar 

  18. Sandberg L, Terkildsen K. Caloric tests in deaf children. Arch Otolaryngol. 1965;81:350–354.

    Article  CAS  PubMed  Google Scholar 

  19. Buchman CA, Joy J, Hodges A, Telischi FF, Balkany TJ. Vestibular effects of cochlear implantation. Laryngoscope. 2004;114 (Suppl 103): 1–22.

    Article  PubMed  Google Scholar 

  20. Wiegersma PH, Van der Velde A. Motor development of deaf children. J Child Psychol Psychiatry. 1983;24:103–111.

    Article  CAS  PubMed  Google Scholar 

  21. Siegel JC, Marchetti M, Tecklin JS. Age-related balance changes in hearing-impaired children. Phys Ther. 1991;71:183–189.

    Article  CAS  PubMed  Google Scholar 

  22. Lieberman LJ, Volding L, Winnick JP. Comparing motor development of deaf children of deaf parents and deaf children of hearing parents. Am Ann Deaf. 2004;149:281–289.

    Article  PubMed  Google Scholar 

  23. Goodman J, Hopper C. Hearing impaired children and youth: a review of psychomotor behavior. Adapt Phys Activ Q. 1992;9:214–236.

    Article  Google Scholar 

  24. Gheysen F, Loots G, Van Waelvelde H. Motor development of deaf children with and without cochlear implants. J Deaf Stud Deaf Educ. 2008;13:215–224.

    Article  PubMed  Google Scholar 

  25. Shall MS. The importance of saccular function to motor development in children with hearing impairments. Int J Otolaryngol. 2009;2009:972565.

    Article  PubMed  Google Scholar 

  26. Sechzer JA, Folstein SE, Geiger EH, Mervis RF, Meehan SM. Development and maturation of postural reflexes in normal kittens. Exp Neurol. 1984;86 no. 3: 493–505.

    Article  CAS  PubMed  Google Scholar 

  27. Rine RM, Cornwall G, Gan K, LoCascio C, O’Hare T, Robinson E, Rice M. Evidence of progressive delay of motor development in children with sensorineural hearing loss and concurrent vestibular dysfunction. Percept Mot Skills. 2000;90:1101–1112.

    Article  CAS  PubMed  Google Scholar 

  28. Rine RM, Lindblad S, Donovan P, Vergara K, Gostin J, Mattson K. Balance and motor skills in young children with sensorineural hearing impairment: a preliminary study. Pediatr Phys Ther. 1996;8:55–61.

    Article  Google Scholar 

  29. Bruininks RH, Broininks BD. Bruininks-Oseretsky Test of motor proficiency manual. 2nd ed. Minneapolis, MN:NCS Pearson Inc.; 2005.

    Google Scholar 

  30. Crowe TK, Horak FB. Motor proficiency associated with vestibular deficits in children with hearing impairments. Phys Ther. 1988;68:1493–1499.

    CAS  PubMed  Google Scholar 

  31. Selz PA, Girardi M, Konrad HR, Huges LF. Vestibular deficits in deaf children. Otolaryngol Head Neck Surg. 1996;115:70–77.

    Article  CAS  PubMed  Google Scholar 

  32. Lelard T, Jamon M, Gasc J, Vidal P. Postural development in rats. Exp Neurol. 2006;202:112–124.

    Article  CAS  PubMed  Google Scholar 

  33. Cushing SL, Papsin BC, Rutka JA, James AL, Gordon KA. Evidence of vestibular and balance dysfunction in children with profound sensorineural hearing loss using cochlear implants. Laryngoscope. 2008;118:1814–1823.

    Article  PubMed  Google Scholar 

  34. Geldhof E, Cardon G, De Bourdeaudhuij I, Danneels L, Coorevits P, Vanderstraeten G, et al.. Static and dynamic standing balance: test–retest reliability and reference values in 9- to 10-year-old children. Eur J Pediatr. 2006;165:779–786.

    Article  PubMed  Google Scholar 

  35. Gabriel LS, Mu K. Computerized platform posturography for children: test–retest reliability of the sensory test of the VSR system. Phys Occup Ther Pediatr. 2002;22:101–117.

    PubMed  Google Scholar 

  36. Folio MR, Fewell RR. Peabody Developmental Motor Scales-2. Austin, TX:PROED; 2000.

    Google Scholar 

  37. Henderson SE, Sugden DA, Barnett AL. Movement assessment battery for children-2: examiner’s manual. London, UK:Pearson Assessment Inc.;2007.

    Google Scholar 

  38. Atwater SW, Crowe TK, Deitz JC, Richardson PK. Interrater and test–retest reliability of two pediatric balance tests. Phys Ther. 1990;70:79–87.

    Article  CAS  PubMed  Google Scholar 

  39. Lindsey D, O’Neal J. Static and dynamic balance skills of eight-year-old deaf and hearing children. Am Ann Deaf. 1976;121:49–55.

    CAS  PubMed  Google Scholar 

  40. Bilir S, Guvin N, Bal S, Metin N, Artan I. A comparison study of gross motor developmental skill normal, hearing-impaired and Down syndrome children. Paper presented at the International Congress on education of the deaf Tel Aviv, Israel; 1995. pp. 16–20.

  41. Omondi D, Ogol C, Otieno S, Isaac macharia. Parental awareness of hearing impairment in their school-going children and health care seeking behaviour in Kisumu district, Kenya. Int J Pediatr Otorhinolaryngol. 2007;71:415–423.

    Article  PubMed  Google Scholar 

  42. Horak FB, Shumway-Cook A, Crowe TK, Black FO. Vestibular function and motor proficiency of children with impaired hearing or with learning disability and motor impairments. Dev Med Child Neurol. 1988;30:64–79.

    Article  CAS  PubMed  Google Scholar 

  43. Krebs DE, Gill-Body KM, Riley PO, Parker SW. Double-blind, placebo–controlled trial of rehabilitation for bilateral vestibular hypofunction: preliminary report. Otolaryngol Head Neck Surg. 1993;109:735–741.

    Article  CAS  PubMed  Google Scholar 

  44. American Speech-Language Hearing Association. Degree of hearing loss. Avaliable at: http://www.asha.org/public/hearing/Degree-of-Hearing-Loss/.

  45. Davidson J, Hyde ML, Alberti PW. Epidemiology of hearing impairment in childhood. Scand Audiol Suppl. 1988;30:13–20.

    CAS  PubMed  Google Scholar 

  46. Espeso A, Owens D, Williams G. The diagnosis of hearing loss in children: common presentations and investigations. Curr Pediatr. 2006;16:484–488.

    Article  Google Scholar 

  47. Shumway-Cook A, Woollacott MH. The growth of stability: postural control from a development perspective. J Mot Behav. 1985;17:131–147.

    Article  CAS  PubMed  Google Scholar 

  48. Long J. Motor abilities of deaf children. Contribution to Education, no. 514.1932. New York, NY:Columbia University Teachers’ College.

  49. Shumway-Cook A, Horak FB. Assessing the influence of sensory interaction on balance: suggestion from the field. Phys Ther. 1986;66:1548–1550.

    Article  CAS  PubMed  Google Scholar 

  50. Ayres AJ. Southern California Postrotary Nystagmus. Test Manual. Western Psychological Services: Los Angeles;1975.

    Google Scholar 

  51. Latash M, Hadders-Algra M. What is posture and how it is controlled? In: Hadders-Algra M, Carlberg EB, editors. Postural control: a key issue in developmental disorders. London, UK:Mac Keith Press;2008. pp. 3–21.

    Google Scholar 

  52. Effgen SK. Effect of an exercise program on the static balance of deaf children. Phys Ther. 1981;61:873–877.

    Article  CAS  PubMed  Google Scholar 

  53. Doershuk CF, Mathews LW, Tucker AS, Spector S. Evaluation of a prophylactic and therapeutic program for patients with cystic fibrosis. Pediatrics. 1965;36:675–688.

    CAS  PubMed  Google Scholar 

  54. Myklebust HR. The psychology of deafness. 2nd ed. New York, NY:Grune & Stratton Inc.;1964. pp. 180–201.

    Google Scholar 

  55. Scanlon SL, Goetzinger CP. The health rails and Fukuda vestibular tests with deaf and hearing subjects. Eye Ear Nose Throat Mon. 1969;48:8–15.

    CAS  PubMed  Google Scholar 

  56. McCarron L, Ludlow G. Sensorineural deafness and neuromuscular dysfunctions: considerations for vocational evaluation and job placement. J Rehabil. 1981;47:59–79.

    Google Scholar 

  57. Horn DL, Pisoni DB, Miyamoto RT. Divergence of fine and gross motor skills in prelingually deaf children: implications for cochlear implantation. Laryngoscope. 2006;116:1500–1506.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kutz W, Wright C, Krull KR, Manolidis S. Neuropsychological testing in the screening for cochlear implant candidacy. Laryngoscope. 2003;113:763–767.

    Article  PubMed  Google Scholar 

  59. Rapin I. Hypoactive labyrinths and motor development. Clin Pediatr. 1974;13:922–937.

    Article  CAS  Google Scholar 

  60. Potter CN, Silverman LN. Characteristics of vestibular function and static balance skills in deaf children. Phys Ther. 1984;64:1071–1075.

    Article  CAS  PubMed  Google Scholar 

  61. Shephard Roy J. Fitness in special populations. Champaign, Illinois;1990. p. 350.

    Google Scholar 

  62. Brunt D, Broadhead GD. Motor proficiency traits of deaf children. Res Q Exerc Sport. 1982;53:236–238.

    Article  Google Scholar 

  63. Boyd J. Comparison of motor behavior in deaf and hearing boys. Am Ann Deaf. 1967;112:598–605.

    CAS  PubMed  Google Scholar 

  64. Schwab B, Kontorinis G. Influencing factors on the vestibular function of deaf children and adolescents–evaluation by means of dynamic posturography. Open Otorhinolaryngol J. 2011;5:1–9.

    Article  Google Scholar 

  65. Cushing SL, James AL, Papsin BC, Gordon KA. The vestibular olympics: a test of dynamic balance function in children with cochlear implants. Arch Otorhinolaryngol. 2007;134:34–38.

    Google Scholar 

  66. Suarez H, Angeli S. Balance sensory organization in children with profound hearing loss and cochlear implants. Int J Pediatr Otorhinolaryngol. 2007;71:629–637.

    Article  CAS  PubMed  Google Scholar 

  67. Rajendran V, Roy FG. An overview of motor skill performance and balance in hearing impaired children. Rajendran and Roy Italian Journal of Pediatrics. 2011;37:33.

    Article  PubMed  Google Scholar 

  68. Morsh JE. Motor performance of the deaf. Comp Psychol Monogr. 1936;13:1–51.

    Google Scholar 

  69. Gallahue D. Understanding motor behavior in children. New York, NY:John Wiley Sons Inc.;1982.

    Google Scholar 

  70. Kandel ER, Schwanz JH. Principles of neural science. 2nd ed. New York, NY:Elsevier Science Publishing Co. Inc.;1985. pp. 584–595.

    Google Scholar 

  71. Padden DA. Ability of deaf swimmers. Res Q. 1959;30:214–225.

    Google Scholar 

  72. Kaga K, Suzuki J, Morsh RR. Influence of labyrinthine hypoactivity on gross motor developmentof infants. Ann NY Acad Sci. 1981;374:412–420.

    Article  CAS  PubMed  Google Scholar 

  73. Carlson RB. Assessment of motor ability of selected deaf children in Kansas. Percept Mot Skills. 1972;34:303–305.

    Article  CAS  PubMed  Google Scholar 

  74. Gayle GW, Pohlman RL. Comparative study of the dynamic, static, and rotary balance of deaf and hearing children. Percept Mot Skills. 1990;70:883–888.

    Article  CAS  PubMed  Google Scholar 

  75. Riach CL, Hayes KC. Maturation of postural sway in young children. Dev Med Child Neurol. 1987;29:650–658.

    Article  CAS  PubMed  Google Scholar 

  76. Butterfield SA, Loovis ME. Influence of age, sex, balance, and sport participation on development of throwing by children in grades K-8. Percept Mot Skills. 1993;76:459–464.

    Article  CAS  PubMed  Google Scholar 

  77. Greendorfer SI, Lewko JH. Role of the family members in sport socialization of children. Res Q. 1978;49:30–48.

    Google Scholar 

  78. Anthrop J, Allison MT. Roll conflict and the high school female athlete. Res Q Exerc Sport. 1983;24:104–111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman A. F. Said MD.

Additional information

Conflicts of interest

There are no conflicts of interest.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, E.A.F. Clinical balance tests for evaluation of balance dysfunction in children with sensorineural hearing loss. Egypt J Otolaryngol 29, 189–201 (2013). https://doi.org/10.7123/01.EJO.0000431452.76343.3d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.7123/01.EJO.0000431452.76343.3d

Keywords