Skip to main content

Sex as a source of variance affecting auditory evoked potential

Abstract

As a noninvasive measure of physiological integrity of auditory pathway, auditory evoked potential (AEP) has gained popularity globally. Baseline reference values specific for each setup demand normative AEP study, in which sex is one of the confounding factors affecting it. We tried to review studies conducted to correlate sex and AEP among various age groups with exploration of various explanations for it and the extent to which they are significant.

References

  1. 1

    Mauguiere F. Electroencephalography evoked potentials and magnetic stimulation. In: Mohr JP, Gautier JC, eds Guide ton clinical neurology. 1st ed. New York: Churchill Livingstone; 1995. 159–160.

    Google Scholar 

  2. 2

    Thomas JE, Dale Allan JD. Other aids in neurological diagnosis. In: Clinical examination in neurology: Mayo Clinic. 5th ed. Philadelphia, PA: W.B. Saunders; 1982. 361–363.

    Google Scholar 

  3. 3

    Thomas PB. Clinical use of neurological diagnostic tests. In: Weiner WJ, Goetz CG, eds Neurology for the non-neurologist. 4th ed. Philadelphia, PA: Lippinkott Williams & Wilkins; 1999. 33–34.

    Google Scholar 

  4. 4

    McFadden D. Sex differences in the auditory system. Dev Neuropsychol 1998; 14: 261–298.

    Google Scholar 

  5. 5

    Jerger J, Hall J. Effects of age and sex on auditory brainstem response. Arch Otolaryngol. 1980; 106: 387–391.

    CAS  PubMed  Google Scholar 

  6. 6

    McFadden D, Martin GK, Stagner BB, Maloney MM. Sex differences in distortion-product and transient-evoked otoacoustic emissions compared. J Acoust Soc Am 2009; 125: 239–246.

    PubMed  PubMed Central  Google Scholar 

  7. 7

    Michalewski HJ, Thompson LW, Patterson JV, Bowman TE, Litzelman D. Sex differences in the amplitudes and latencies of the human auditory brain stem potential. Electroencephalogr Clin Neurophysiol 1980; 48: 351–356.

    CAS  PubMed  Google Scholar 

  8. 8

    McFadden D. Sexual orientation and the auditory system. Front Neuroendocrinol 2011; 32: 201–213.

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Ponton CW, Eggermont JJ, Coupland SG, Winkelaar R. The relation between head size and auditory brain-stem response interpeak latency maturation. J Acoust Soc Am 1993; 94: 2149–2158.

    CAS  PubMed  Google Scholar 

  10. 10

    Maurizi M, Ottaviani F, Paludetti G, Almadori G, Pierri F, Rosignoli M. Effects of sex on auditory brainstem responses in infancy and early childhood. Scand Audiol 1988; 17: 143–146.

    CAS  PubMed  Google Scholar 

  11. 11

    Nanova P, Kolev V, Yordanova J. Developmental gender differences in the synchronization of auditory event-related oscillations. Clin Neurophysiol 2011; 122: 907–915.

    PubMed  Google Scholar 

  12. 12

    Liu P, Chen Z, Jones JA, Wang EQ, Chen S, Huang D, Liu H. Developmental sex-specific change in auditory-vocal integration: ERP evidence in children. Clin Neurophysiol 2013; 124: 503–513.

    PubMed  Google Scholar 

  13. 13

    Brumback TY, Arbel Y, Donchin E, Goldman MS. Efficiency of responding to unexpected information varies with sex, age, and pubertal development in early adolescence. Psychophysiology 2012; 49: 1330–1339.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Solanki JD, Joshi NH, Mehta HB, Shah CJ. A study of gender, head circumference and BMI as a variable affecting BAEP results of late teenagers. Ind J Otol 2012; 18: 3–6.

    Google Scholar 

  15. 15

    Harinder JS, Ramsarup S, Sharanjit K. The study of age and sex related changes in the auditory brainstem evoked potential. JClin Diagn Res 2010; 4: 3495–3499.

    Google Scholar 

  16. 16

    Mitchell C, Phillips DS, Trune DR. Variables affecting the auditory brainstem response: audiogram, age, gender and head size. Hear Res 1989; 40: 75–85.

    CAS  PubMed  Google Scholar 

  17. 17

    McFadden D, Hsieh MD, Garcia-Sierra A, Champlin CA. Differences by sex, ear, and sexual orientation in the time intervals between successive peaks in auditory evoked potentials. Hear Res 2010; 270: 56–64.

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Swink S, Stuart A. Auditory long latency responses to tonal and speech stimuli. J Speech Lang Hear Res 2012; 55: 447–459.

    PubMed  Google Scholar 

  19. 19

    Camposano S, Lolas F. Effects of stimulation intensity, gender and handedness upon auditory evoked potentials. Arq Neuropsiquiatr 1992; 50: 43–49.

    CAS  PubMed  Google Scholar 

  20. 20

    Amenedo E, Diaz F. Effects of aging on middle-latency auditory evoked potentials: a cross-sectional study. Biol Psychiatry 1998; 43: 210–219.

    CAS  PubMed  Google Scholar 

  21. 21

    Krizman J, Skoe E, Kraus N. Sex differences in auditory subcortical function. Clin Neurophysiol 2012; 123: 590–597.

    PubMed  Google Scholar 

  22. 22

    Loehlin JC, McFadden D. Otoacoustic emissions, auditory evoked potentials, and traits related to sex and sexual orientation. Arch Sex Behav 2003; 32: 115–127.

    PubMed  Google Scholar 

  23. 23

    Stewart MG, Jerger J, Lew HL. Effect of handedness on the middle latency auditory evoked potential. Am J Otol 1993; 14: 595–600.

    CAS  PubMed  Google Scholar 

  24. 24

    KA Al-Abduljawad. Gender effects on N1/P2 auditory evoked potential. Saudi J Otorhinolaryngol Head Neck Surg 2008; 1:50–52.

    Google Scholar 

  25. 25

    Patterson JV, Michalewski HJ, Thompson LW, Bowman TE, Litzelman DK Age and sex differences in the human auditory brianstem response. J Gerontol 1982; 36: 455–462.

    Google Scholar 

  26. 26

    Shashiraj HK. Normative study of brainstem auditory evoked potentials in young adults [dissertation]. Bangalore, Karnataka: Rajiv Gandhi University of Health Sciences; 2007.

    Google Scholar 

  27. 27

    Tandon OP, Krishna SV. Brainstem auditory evoked potentials in children — a normative study. Indian Pediatr 1990; 27: 737–740.

    CAS  PubMed  Google Scholar 

  28. 28

    Tandon OP. Auditory brainstem evoked responses in healthy North Indians. Indian J Med Res 1990; 92: 252–256.

    CAS  PubMed  Google Scholar 

  29. 29

    Meij BP, Venker-van Haagen AJ, van den Brom WE. Relationship between latency of brainstem auditory-evoked potentials and head size in dogs. Vet Q 1992; 14: 121–126.

    CAS  PubMed  Google Scholar 

  30. 30

    Aoyagi M, Kim Y, Yokoyama J, Kiren T, Suzuki Y, Koike Y. Head size as a basis of gender difference in the latency of the brainstem auditory-evoked response. Audiology 1990; 29: 107–112.

    CAS  PubMed  Google Scholar 

  31. 31

    Antonelli AR, Bonfioli F, Nicolai P, Peretti G. The relationship of head and brainstem size to main parameters of ABR in the developmental age and in adults. Acta Otolaryngol 1988; 105: 587–590.

    CAS  PubMed  Google Scholar 

  32. 32

    Yamaguchi J, Yagi T, Baba S, Aoki H, Yamanobe S. Relationship between auditory brainstem response waveform and head size. Otorhinolaryngol Relat Spec 1991; 53: 94–99.

    CAS  Google Scholar 

  33. 33

    Trune DR, Mitchell C, Phillips DS. The relative importance of head size, gender and age on the auditory brainstem response. Hear Res 1988; 32: 165–174.

    CAS  PubMed  Google Scholar 

  34. 34

    Nikiforidis GC, Koutsojannis CM, Varakis JN, Goumas PD. Reduced variance in the latency and amplitude of the fifth wave of auditory brain stem response after normalization for head size. Ear Hear 1993; 14: 423–428.

    CAS  PubMed  Google Scholar 

  35. 35

    Costa Neto TT, Ito YI, Fuku da Y, Gananca MM, Caovilla HH. Effects of gender and head size on the auditory brainstem response. Rev Laryngol Otol Rhinol (Bord) 1991; 112:17–19.

    CAS  Google Scholar 

  36. 36

    Durrant JD, Sabo DL, Hyre RJ. Gender, head size, and ABRs examined in large clinical sample. Ear Hear 1990; 11: 210–214.

    CAS  PubMed  Google Scholar 

  37. 37

    Sabo DL, Durrant JD, Curtin H, Boston JR, Rood S. Correlations of neuroanatomical measures to auditory brain stem response latencies. Ear Hear 1992; 13: 213–222.

    CAS  PubMed  Google Scholar 

  38. 38

    Egan V, Chiswick A, Santosh C, Naidu K, Rimmington JE, Best JJK. Size isn’t everything: a study of brain volume, intelligence and auditory evoked potentials. J Clin Neurosci 2013; 20: 383–388.

    Google Scholar 

  39. 39

    Sagi E, D’Alessandro LM, Norwich KH. Identification variability as a measure of loudness: an application to gender differences. Can J Exp Psychol 2007; 61: 64–70.

    PubMed  Google Scholar 

  40. 40

    Hultcrantz M, Simonoska R, Stenberg AE. Estrogen and hearing: a summary of recent investigations. Acta Otolaryngol 2006; 126: 10–14.

    CAS  PubMed  Google Scholar 

  41. 41

    McFadden D. Masculinizing effects on otoacoustic emissions and auditory evoked potentials in women using oral contraceptives. Hear Res 2000; 142: 23–33.

    CAS  PubMed  Google Scholar 

  42. 42

    McFadden D, Loehlin JC, Pasanen EG. Additional findings on heritability and prenatal masculinization of cochlear mechanisms: click-evoked otoacoustic emissions. Hear Res 1996; 97:102–119.

    CAS  PubMed  Google Scholar 

  43. 43

    Tremere LA, Pinaud R. Brain-generated estradiol drives long-term optimization of auditory coding to enhance the discrimination of communication signals. J Neurosci 2011; 31: 3271–3289.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Coleman JR, Campbell D, Cooper WA, Welsh MG, Moyer J. Auditory brainstem responses after ovariectomy and estrogen replacement in rat. Hear Res 1994; 80: 209–215.

    CAS  PubMed  Google Scholar 

  45. 45

    Caruso S, Cianci A, Grasso D, Agnello C, Galvani F, Maiolino L, Serra A Auditory brainstem response in postmenopausal women treated with hormone replacement therapy: a pilot study. Menopause 2000; 7: 178–183.

    CAS  PubMed  Google Scholar 

  46. 46

    McFadden D. What do sex, twins, spotted hyenas, ADHD, and sexual orientation have in common? Perspect Psychol Sci 2008; 3: 309–323.

    PubMed  Google Scholar 

  47. 47

    Dehan CP, Jerger J. Analysis of gender differences in the auditory brainstem response. Laryngoscope 1990; 100: 18–24.

    CAS  PubMed  Google Scholar 

  48. 48

    Don M, Ponton CW, Eggermont JJ, Masuda A. Gender differences in cochlear response time: an explanation for gender amplitude differences in the unmasked auditory brain-stem response. J Acoust Soc Am 1993; 94: 2135–2148.

    CAS  PubMed  Google Scholar 

  49. 49

    Ismail H, Thornton AR. The interaction between ear and sex differences and stimulus rate. Hear Res 2003; 179: 97–103.

    PubMed  Google Scholar 

  50. 50

    Burman DD, Bitan T, Booth JR. Sex differences in neural processing of language among children. Neuropsychologia 2008; 46: 1349–1362.

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Yadav A, Tandon OP, Vaney N. Long latency auditory evoked responses in ovulatory and anovulatory menstrual cycle. Indian J Physiol Pharmacol 2003; 47: 179–184.

    PubMed  Google Scholar 

  52. 52

    Fagan PL, Church GT. Effect of the menstrual cycle on the auditory brainstem response. Audiology 1986; 25: 321–328.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jayesh Dalpatbhai Solanki MD.

Additional information

Conflicts of interest

None declared.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solanki, J.D., Mehta, H.B. Sex as a source of variance affecting auditory evoked potential. Egypt J Otolaryngol 31, 111–114 (2015). https://doi.org/10.4103/1012-5574.156094

Download citation

Keywords

  • age group
  • auditory evoked potential
  • normative
  • physiological
  • sex