Skip to main content

Demonstration of aeroallergenicity of fungal hyphae and hyphal fragments among allergic rhinitis patients using a novel immunostaining technique

En

Abstract

Background

More than 80 species of fungi are suspected of inducing immunoglobulin E (IgE)-mediated hypersensitivity. Exposure to airborne fungal conidia has been linked to the respiratory symptoms in individuals with fungal allergy; however, the contribution of airborne fungal hyphae and hyphal fragments to allergic diseases is poorly understood.

Objective

We sought to investigate the expression of allergens from airborne fungal hyphae and hyphal fragments using the halogen immunoassay, which uses patients’ serum IgE to immunostain immobilized allergens extracted from individual fungal particles.

Materials and methods

Airborne fungi were collected from the nasal cavities of 25 patients and 10 controls using the refined nasal wash technique, fixed on mixed cellulose ester protein-binding membranes, incubated overnight in a humid chamber to promote the germination of conidia, and immunostained with the participants own serum IgE. The samples were examined by means of light microscopy, and positively immunostained fungal particles were classified and counted.

Results

All samples contained fungal particles that expressed soluble allergens and were significantly higher in concentration than counts of conidia of individual well-characterized allergenic genera (P < 0.05). Resultant immunostaining of fungal hyphae was heterogeneous, and 27% of all hyphae expressed detectable allergens compared with nonstained hyphae (P < 0.05).

Conclusion

This study conclusively demonstrates that fungal hyphae and fragments are underestimated sources of aeroallergens because positively immunostained hyphal fragments were detected in all samples and the number of the detected fungal hyphae in any of the individual protein-binding membranes was significantly higher than the conidial counts in any of the commonly recognized aeroallergenic species.

References

  1. 1

    Burge HA, Pierson DL, Groves TO, Strawn KF, Mishra SK. Dynamics of airborne fungal populations in a large office building. Curr Microbiol 2000; 40: 10–16.

    CAS  PubMed  Google Scholar 

  2. 2

    Gots RE, Layton NJ, Pirages SW. Indoor health: background levels of fungi. Am Ind Hyg Assoc J 2003; 64: 427–438.

    Google Scholar 

  3. 3

    Horner WE, Helbling A, Salvaggio JE, Lehrer SB. Fungal allergens. Clin Microbiol Rev 1995; 8: 161–179.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Li D-W, Kendrick B. Indoor aeromycota in relation to residential characteristics and allergic symptoms. Mycopathologia 1995; 131: 149–157.

    CAS  PubMed  Google Scholar 

  5. 5

    Zureik M, Neukirch C, Leynaert B, Liard R, Bousquet J, Neukirch F. Sensitisation to airborne moulds and severity of asthma: Cross sectional study from European Community respiratory health survey. Br Med J 2002; 325: 411–414.

    Google Scholar 

  6. 6

    O’Hollaren MT, Yunginger JW, Offord KP, Somers MJ, O’Connell EJ, Ballard DJ, Sachs MI. Exposure to an aeroallergen as a possible precipitating factor in respiratory arrest in young patients with asthma. N Engl J Med 1991; 324:359–363.

    PubMed  Google Scholar 

  7. 7

    Rogers CA. Indoor fungal exposure. Immunol Allergy Clin North Am 2003; 23: 501–518.

    PubMed  Google Scholar 

  8. 8

    Kurup VP, Shen H-D, Vijay H. Immunobiology of fungal allergens. Int Arch Allergy Immunol 2002; 129: 181–188.

    CAS  PubMed  Google Scholar 

  9. 9

    Black PN, Udy AA, Brodie SM. Sensitivity to fungal allergens is a risk factor for life-threatening asthma. Allergy 2000; 55: 501–504.

    CAS  PubMed  Google Scholar 

  10. 10

    Meirer FC, Lindbergh CA. Collecting microorganisms in the Arctic atmosphere with field notes and material. Sci Monthly 1935; 40: 5–20.

    Google Scholar 

  11. 11

    Harvey R. Air-spora studies at Cardiff. III. Hyphal fragments. Trans Br Mycol Soc 1970; 54: 251–254.

    Google Scholar 

  12. 12

    Pady SM, Gregory PH. Numbers and viability of airborne hyphal fragments in England. Trans Br Mycol Soc 1963; 46: 609–613.

    Google Scholar 

  13. 13

    Pady SM, Kramer CL. Kansas aeromycology VI: Hyphal fragments. Mycologia 1960; 52: 681–687.

    Google Scholar 

  14. 14

    Sinha, RJ, Kramer, CL. Identifying hyphal fragments in the atmosphere. Trans Kans Acad Sci 1971; 74:48–51.

    CAS  PubMed  Google Scholar 

  15. 15

    Green BJ, Sercombe JK, Tovey ER. Fungal fragments and undocumented conidia function as new aeroallergen sources. J Allergy Clin Immunol 2005; 115: 1043–1048.

    PubMed  Google Scholar 

  16. 16

    Green BJ, Tovey ER, Sercombe JK, Blachere FM, Beezhold DH, Schmechel D. Airborne fungal fragments and allergenicity. Med Mycol 2006; 44(Suppl 1):245–255.

    Google Scholar 

  17. 17

    Górny RL, Reponen T, Willeke K, Schmechel D, Robine E, Boissier M, Grinshpun SA. Fungal fragments as indoor air biocontaminants. Appl Environ Microbiol 2002; 68: 3522–3531.

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Brasel TL, Douglas DR, Wilson SC, Straus DC. Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins on particulates smaller than conidia. Appl Environ Microbiol 2005; 71: 114–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Sorenson WG, Frazer DG, Jarvis BB, Simpson J, Robinson VA. Trichothecene mycotoxins in aerosolized conidia of Stachybotrys atra. Appl Environ Microbiol 1987; 53: 1370–1375.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Reponen T, Seo S-C, Grimsley F, Lee T, Crawford C, Grinshpun SA. Fungal fragments in moldy houses: A field study in homes in New Orleans and Southern Ohio. Atmos Environ 2007; 41: 8140–8149.

    CAS  PubMed Central  Google Scholar 

  21. 21

    Seo SC, Grinshpun SA, Iossifova Y, Schmechel D, Rao C, Reponen T. A new field-compatible methodology for the collection and analysis of fungal fragments. Aerosol Sci Technol 2007; 41: 794–803.

    CAS  Google Scholar 

  22. 22

    Delfino RJ, Zeiger RS, Seltzer JM, Street DH, Matteucci RM, Anderson PR, Koutrakis P. The effect of outdoor fungal spore concentrations on daily asthma severity. Environ Health Perspect 1997; 105: 622–635.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Watts JC, Chandler FW. The surgical pathologist’s role in the diagnosis of infectious diseases. J Histotechnol 1995; 18: 191–193.

    Google Scholar 

  24. 24

    Renshaw AA. The relative sensitivity of special stains and culture in open lung biopsies. Am J Clin Pathol 1994; 102: 736–740.

    CAS  PubMed  Google Scholar 

  25. 25

    Halaby T, Boots H, Vermeulen A, Van Der Ven A, Beguin H, Van Hooff H, Jacobs J. Phaeohyphomycosis caused by Alternaria infectoria in a renal transplant recipient. J Clin Microbiol 2001; 39: 1952–1955.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Procop GW, Wilson M. Infectious disease pathology. Clin Infect Dis 2001; 32: 1589–1601.

    CAS  PubMed  Google Scholar 

  27. 27

    Chandler FW. In: Connor DH, Chandler FW eds Approaches to the pathologic diagnosis of infectious diseases. Pathology of infectious diseases 1997; Stamford, Connecticut: Appleton and Lange; 1:3–7.

    Google Scholar 

  28. 28

    Licorish K, Novey HS, Kozak P, Fairshter RD, Wilson AF. Role of Alternaria and Penicillium spores in the pathogenesis of asthma. J Allergy Clin Immunol 1985; 76: 819–825.

    CAS  PubMed  Google Scholar 

  29. 29

    Esch RE. Manufacturing and standardizing fungal allergen products. J Allergy Clin Immunol 2004; 113: 210–215.

    PubMed  Google Scholar 

  30. 30

    Malling H-J. Diagnosis of mold allergy. Clin Rev Allergy 1992; 10: 213–236.

    CAS  PubMed  Google Scholar 

  31. 31

    Green BJ, Yli-Panula E, Tovey ER. Halogen immunoassay, a new method for the detection of sensitization to fungal allergens; comparisons with conventional techniques. Allergol Int 2006; 55: 131–139.

    CAS  PubMed  Google Scholar 

  32. 32

    Sward-Nordmo M, Almeland T-L, Aukrust L. Variability in different strains of Cladosporium herbarum with special attention to carbohydrates and contents of two important allergens (Ag-32 and Ag-54). Allergy 1984; 39: 387–394.

    CAS  PubMed  Google Scholar 

  33. 33

    Maccario J, Oryszczyn M-P, Charpin D, Kauffmann F. Methodologic aspects of the quantification of skin prick test responses: The EGEA study. J Allergy Clin Immunol 2003; 111: 750–756.

    PubMed  Google Scholar 

  34. 34

    Kozak P, Hoffman D. In: Al-Doory Y, Domson JF (eds). Critical review of diagnostic procedures. Mould allergy 1984; Philadelphia: Lea & Febiger.

    Google Scholar 

  35. 35

    Corsico R, Cinti B, Feliziani V, Gallesio MT, Liccardi G, Loreti A, et al. Prevalence of sensitization to Alternaria in allergic patients in Italy. Ann Allergy Asthma Immunol 1998; 80: 71–76.

    CAS  PubMed  Google Scholar 

  36. 36

    Nordvall SL, Agrell B, Malling H-J, Dreborg S. Diagnosis of mold allergy by RAST and skin prick testing. Ann Allergy 1990; 65: 418–422.

    CAS  PubMed  Google Scholar 

  37. 37

    Popp W, Zwick H, Rauscher H. Indirect immunofluorescent test on spore sampling preparations: a technique for diagnosis of individual mold allergies. Stain Technol 1988; 63: 249–253.

    CAS  PubMed  Google Scholar 

  38. 38

    Williams PB, Siegel C, Portnoy J. Efficacy of a single diagnostic test for sensitization to common inhalant allergens. Ann Allergy Asthma Immunol 2001; 86: 196–202.

    CAS  PubMed  Google Scholar 

  39. 39

    Green BJ, Schmechel D, Tovey ER. Detection of aerosolized Alternaria alternata conidia, hyphae, and fragments by using a novel double-immunostaining technique. Clin Diagn Lab Immunol 2005; 12: 1114–1116.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Ponikau JU. The diagnosis and incidence of allergic fungal sinusitis. Mayo Clin Proc 1999; 74: 877–884.

    CAS  PubMed  Google Scholar 

  41. 41

    Levetin E. In: Burge HA ed Fungi. Bioaerosols. Boca Raton, FL: Lewis Publishers; 1995. p. 87–120.

    Google Scholar 

  42. 42

    Marfenina OE, Ivanova AE, Zvyagintsev DG. The effect of fragmentation of the mycelium of various yeast species on its viability. Microbiology 1994; 63: 603–606.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hany Samir MD.

Additional information

Conflicts of interest

None declared.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Samir, H., Wageh, W. & Emam, M.M.AE. Demonstration of aeroallergenicity of fungal hyphae and hyphal fragments among allergic rhinitis patients using a novel immunostaining technique. Egypt J Otolaryngol 30, 17–22 (2014). https://doi.org/10.4103/1012-5574.127186

Download citation

Keywords

  • fungal aeroallergenicity
  • fungal fragments
  • fungal hyphae
  • halogen immunoassay
  • immunostaining